Effects of microinjected photoreactivating enzyme on thymine dimer removal and DNA repair synthesis in normal human and xeroderma pigmentosum fibroblasts.

نویسندگان

  • L Roza
  • W Vermeulen
  • J B Bergen Henegouwen
  • A P Eker
  • N G Jaspers
  • P H Lohman
  • J H Hoeijmakers
چکیده

UV-induced thymine dimers (10 J/m2 of UV-C) were assayed in normal human and xeroderma pigmentosum (XP) fibroblasts with a monoclonal antibody against these dimers and quantitative fluorescence microscopy. In repair-proficient cells dimer-specific immunofluorescence gradually decreased with time, reaching about 25% of the initial fluorescence after 27 h. Rapid disappearance of dimers was observed in cells which had been microinjected with yeast photoreactivating enzyme prior to UV irradiation. This photoreactivation (PHR) was light dependent and (virtually) complete within 15 min of PHR illumination. In general, PHR of dimers strongly reduces UV-induced unscheduled DNA synthesis (UDS). However, when PHR was applied immediately after UV irradiation, UDS remained unchanged initially; the decrease set in only after 30 min. When PHR was performed 2 h after UV exposure, UDS dropped without delay. An explanation for this difference is preferential removal of some type(s) of nondimer lesions, e.g., (6-4) photoproducts, which is responsible for the PHR-resistant UDS immediately following UV irradiation. After the rapid removal of these photoproducts, the bulk of UDS is due to dimer repair. From the rapid effect of dimer removal by PHR on UDS it can be deduced that the excision of dimers up to the repair synthesis step takes considerably less than 30 min. Also in XP fibroblasts of various complementation groups the effect of PHR was investigated. The immunochemical dimer assay showed rapid PHR-dependent removal comparable to that in normal cells. However, the decrease of (residual) UDS due to PHR was absent (in XP-D) or much delayed (in XP-A and -E) compared to normal cells. This supports the idea that in these XP cells preferential repair of nondimer lesions does occur, but at a much lower rate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unscheduled DNA synthesis in xeroderma pigmentosum cells after microinjection of yeast photoreactivating enzyme.

Photoreactivating enzyme (PRE) from yeast causes a light-dependent reduction of UV-induced unscheduled DNA synthesis (UDS) when injected into the cytoplasm of repair-proficient human fibroblasts (Zwetsloot et al., 1985). This result indicates that the exogenous PRE monomerizes UV-induced dimers in these cells competing with the endogenous excision repair. In this paper we present the results of...

متن کامل

Xeroderma pigmentosum cells contain low levels of photoreactivating enzyme.

Fibroblasts from patients with xeroderma pigmentosum contain low levels of photoreactivating enzyme in comparison to normal cells. Levels vary from 0 (line 1199) to 50 (line 1259) percent of normal. The depressed enzyme levels are not an artifact of low growth rate, age of cell donor, cell culture conditions, assay conditions, the presence of inhibitors, or mycoplasma contamination. We show tha...

متن کامل

Defective thymine dimer excision by cell-free extracts of xeroderma pigmentosum cells.

Crude extracts of normal human diploid fibroblasts and of human peripheral blood lymphocytes excise thymine dimers from purified ultraviolet-irradiated DNA, or from the DNA presumably present as chromatin in unfractionated cell-free preparations of cells that had been labeled with [3H]thymidine. Extracts of xeroderma pigmentosum cells from complementation groups A, C, and D also excise thymine ...

متن کامل

Sodium butyrate stimulates DNA repair in UV-irradiated normal and xeroderma pigmentosum human fibroblasts.

Histone acetylation, DNA replicative synthesis, UV-induced DNA repair synthesis, and UV-induced endonuclease-sensitive sites were measured in normal human fibroblasts and xeroderma pigmentosum fibroblasts (complementation groups A, C, and D) following exposure to sodium butyrate. In all four cell types, treatment with millimolar concentrations of sodium butyrate resulted in a hyperacetylation o...

متن کامل

Regulation of DNA repair in serum-stimulated xeroderma pigmentosum cells

The regulation of DNA repair during serum stimulation of quiescent cells was examined in normal human cells, in fibroblasts from three xeroderma pigmentosum complementation groups (A, C, and D), in xeroderma pigmentosum variant cells, and in ataxia telangiectasia cells. The regulation of nucleotide excision repair was examined by exposing cells to ultraviolet irradiation at discrete intervals a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 50 6  شماره 

صفحات  -

تاریخ انتشار 1990